Bonz

Notes

	TABLE 1								
O-H Stretching Frequencies of Cyclic Glycols and Arylalkyl Alcohols (cm1)									
Compound	Free	$OH\pi$	OHO						
zyl alcohol	3632	3615							
nenylethanol	3631	3604	• • •						

	0004	0010		-1
8-Phenylethanol	3631	3604	· · ·	5
cis-Cyclohexane-1,2-diol	3626		3587	35
trans-Cyclohexane-1,2-diol	3634		3602	3b
cis-Tetrahydronaphthalene-1,2-diol		3618	3575	3b
trans-Tetrahydronaphthalene-1,2-diol		3615	3582	3b
cis-Cyclopentane-1,2-diol	3633		3572	3b
trans-Cyclopentane-1.2-diol	3620			3b
exo-cis-Bicvcloheptane-2.3-diol	3632		3529	6
endo-cis-Bicycloheptane-2,3-diol	3633		3531	6
cis-Flavan-3,4-diol (m.p. 160°)		3606	3578	
trans-Flavan-3,4-diol (m.p. 145°)		3608		
· · · · · · · · · · · · · · · · · · ·				

atom of the 4-hydroxyl group which is weakly bonded to the oxygen atom in the 3-position. These two frequencies superimpose to give a single sharp band.

Cyanoethylation of Fatty Amines Using Acidic Ion Exchange Catalysis¹

RICHARD W. FULMER

General Mills, Inc., Central Research Laboratories, East Hennepin Laboratory, Minneapolis 13, Minnesota

Received July 9, 1962

The uncatalyzed addition of acrylonitrile to activated hydrogen bearing molecules is employed to yield the corresponding cyanoethyl substituted derivative. Ionic catalysis aids this addition to less activated centers. Cyanoethylation of weakly basic amines (for example secondary amines already bearing a deactivating cyanoethyl group) has been aided by organic acids such as acetic, propionic, benzoic, or *p*-toluenesulfonic.² A mixture of acetic and phosphoric acids has been employed in the direct addition of two moles acrylonitrile to primary fatty amines.³ Reference 2 suggests use of the organic acid to 10–50% of the combined amine-acrylonitrile weight and the product yield varies from 40-70%.

Acidic ion exchange resins have been found effective in the dicyanoethylation of fatty amines. Since they remain insoluble throughout the reaction, simple filtration removes the resin or resinamine salt from the final reaction solution. Reuse of the resin has been demonstrated, but a moderate decrease in catalytic activity was noted.

The resins were obtained water-wet and several repeated suspensions in absolute methanol removed most of the water leaving a methanol-wet resin. Similar treatment was given the three types of resins used: Dowex 50W (sulfonic acid type);

(2) G. W. Fowler and J. W. Lynn, U. S. Patent 3,020,310 (February 6, 1962).

(3) R. Nordgren, U. S. Patent 3,028,415, (April 3, 1962).

Rohm & Haas XE-89 (carboxylic acid type); and Chemical Process Co. Duolite C-63 (phosphoric acid type).

Table I (p. 4116) indicates that the sulfonic resin was most active in catalyzing this reaction and the phosphoric acid resin least active.

Experiment 6 represents the repeated usage of the Dowex resin. The weight increase from A to B indicates that some amine-resin salt is combined from the first reaction. The recovered resin was washed twice in absolute methanol and reused immediately. A notable decrease in conversion of primary amine to N,N-dicyanoethyl fatty amine was observed—from 84 to 72%. When used still a third time, no further activity decrease was recorded.

The degree of resin cross linking and the mesh size also appear to affect the degree of dicyanoethylation. Dowex 50W cross linked with 1% divinylbenzene is more effective than resin cross linked with 4, 8, or 12% DVB. Likewise the smaller particle size (50–100 mesh) resin aids this reaction.

Experimental

(Table I, Run 5).—The following materials were placed in a 500-ml. three-neck round-bottom flask with mechanical stirrer, thermometer, and reflux condenser: 177 g. (0.64 mole) of octadecylamine (total amine #205, 97% primary and 0.3% secondary amine, IV 3.5, containing approximately 7% hexadecylamine), 75 g. (1.4 mole) of acrylonitrile, 5 g. of absolute methanol, and 20 g. of methanol-wet Dowex 50W-IX (50-100 mesh) H⁺ form. An initial exothermic reaction occurred and then external heat was required to maintain the reaction at the reflux temperature of 70-75°. Samples and final reaction mixture were filtered to remove ion exchange resin. The solvent and excess acrylonitrile were removed from the filtrate under reduced pressure and finally at 60° under high vacuum. Nearly quantitative total recovery was achieved.

	Total	Tertiary
	amine	amine
Hours	no.	no,
2	170	22.8
7	161	65
22	157	109
29.5	150	134.7

Theoretical amine no.: dicyanoethyl derivative 149.2; monocyanoethyl derivative 174.0.

Ref.

4

⁽¹⁾ Journal Series Number 312, Central Research Laboratories, General Mills, Inc.

[%	R-N	PoCHo-	CN).	100	95	65	85	06	84	72	11	55	50	sample sample iroxide
	Theor.			no.	8.7	12.4	19.2	19.2	19.2	œ	- oc	8	20	192	in 1-g.s in 1-g.s um hyd
	Ŧ	+								14	14	14			amine i amine potassi
l'roduet-		v Secondary		no.										100	o total tertiary r: mg.
		Tertiary	amine	no.e	234	182	102	125	134.7	126.4	110	109.6	167	109	aquiv. t uiv. to numbe rtiary).
		Total	amine	$no.^d$	236	192.9	155.4	150.6	150.2	150.5	152	153.5	195.6	209	^{<i>d</i>} Total amine number: mg. potassium hydroxide equiv. to total amine in 1-g. sample ertiary amine number: mg. potassium hydroxide equiv. to tertiary amine in 1-g. sample primary and secondary amine). ^{<i>f</i>} Secondary amine number: mg. potassium hydroxide ration after addition of salicylaldehyde; subtract tertiary).
			Wt.,	ಮ	39	132	365	352	218	346	363	311 -	136	132	sium hy um hyd Seconda yde; su
		tion	Time,	hr.	22	17	26	24	29	25	24	24	18	18	. potass potassi ne). ^f { ylaldehy
			Temp.,	°C.	70-76	70-74	72	72	70-75	70-78	70-78	70-80	72	72	ber: mg er: mg. ary amir a of salic
			MeOH,	ы. Ы	4	5	10	10	5 C	15	15	13	ю	ŋ	ne num c numb second additior
			-Aerylonitrile-	Mole	0.396	1.17	2.35	2.35	1.41	2.19	2.19	1.79	1.17	1.17	otal ami ary amin 1ary and 1n after 2
			Aerylo	Ċ	21	62	125	125	75	116	116	95	62	62	n. ^d T ^e Tertis ate prim titratio
			(ಲೆ	10	20	30	30	ଷ୍ଟ	27	37°	35°	15	15	rious ru vent). • acetyl: iiary by
				Size	(20 - 50)	(20 - 50)	(20 - 50)	(50-100)	(50-100)	(50-100)	(50-100)	(50 - 100)			^{σ} Reused from previous run. ^{d} Total amine number: mg. potassium hydroxide equiv. to total amine in lacial acetic acid solvent). ^{σ} Tertiary amine number: mg. potassium hydroxide equiv. to tertiary amine in er sample treated to acetylate primary and secondary amine). ^{f} Secondary amine number: mg. potassiun ne secondary tertiary by titration after addition of salicyladehyde; subtract tertiary).
	Reactants		Resin ⁽	Name	Dowex 50W-4X	Dowex 50W-4X	Dowex 50W-4X	Dowex 50W-4X	Dowex 50W-1X	Dowex 50W-1X	Dowex 50W-1X	Dowex 50W-1X	XE-89	Duolite C-63	ty amines. ^c Reused ric acid in glacial aceti oric acid after sample od: determine seconds
				Mole	0.17	0.49	1.0	1.0	0.64	1.0	1.0	0.85	0.49	0.49	Il oil fat z perchlo g perchlc le (methc
				Ċ	22	91	276	276	177	273	273	233	91	91	fixed ta on using ion usin g. sampl
			Amine	no.	433.7	303	205	205	205	206	206	206	303	303	-wet. ^b N tric titrati tric titrati nine in 1- _f
				Name	n-C ₈ H ₁₆ NH ₂	$C_{12}H_{24}NH_2$	$C_{18}H_{36}NH_2$	$C_{18}H_{36}NH_2$	C ₁₈ H ₂₆ NH ₂	C ₁₈ H ₃₆ NH ₂ ^b	$C_{18}H_{36}NH_2^b$	C ₁₈ H ₃₆ NH ₂ ^b	$C_{12}H_{24}NH_2$	$C_{12}H_{24}NH_2$	^{a} Weight-methanol-wet. ^{b} Mixed tall oil fatty amines. (method: potentiometric titration using perchloric acid in gl (method: potentiometric titration using perchloric acid afte equiv. to secondary amine in 1-g. sample (method: determit
			Run	по.	1	2	ŝ	4	ы Ч	6a	q	ల	1-	×	^a We (metho (metho equiv. t

Notes

SAMUEL F. REED

Rohm & Haas Company, Redstone Arsenal Research Division, Huntsville, Alabama

Received July 16, 1962

In connection with other studies in progress in this laboratory it was desired to have a source of 3pentadienone (divinyl ketone). 3-Pentadienone has previously been prepared by the dehydrochlorination of di(β -chloroethyl) ketone² and by the thermal cracking of di(β -methoxyethyl)ketone.³ Both methods were rejected due to a number of inconveniences connected with the various reactions involved. A route which appeared promising was the oxidation of divinylcarbinol under the mild conditions exemplified in the manganese dioxide oxidation of allylic alcohols, a reaction which has been studied in some detail with satisfactory results being reported in numerous instances.⁴

Various factors exert an influence on the rate of the reaction and the ultimate yield of the oxidized product. The type of manganese dioxide employed appears to be the most important single factor. It was found that divinylcarbinol could be oxidized to 3-pentadienone in moderate yields employing manganese dioxide of four different types. Manganese dioxide (type A) was purchased commercially⁵ and used as received. Manganese dioxides (types B and C) were prepared according to the procedure of Harfenist⁶ by pyrolysis of manganese carbonate (type B) followed by washing with dilute nitric acid and thorough drying (type C). More consistent yields of the ketone were obtained employing a grade of manganese dioxide (type D) prepared by the method of Attenburrow and coworkers.7

The oxidations were carried out in chloroform or methylene chloride solutions with equal results employing ratios of divinylcarbinol to manganese dioxide of from 1/5 to 1/15. The yield data is presented in Table I. Although the yields varied considerably even with oxidations carried out using a single type of manganese dioxide a ratio of 1/10was found to give near optimum yields. The extent of the reaction was followed by infrared spectroscopy which showed in most instances that the reaction was essentially complete within four to

(1) This work was performed under sponsorship of the U. S. Army under Contract No.DA-01-021 ORD-11878.

(2) Johannes Nelles, U. S. Patent 2,105,792 (January 18, 1938).

(3) I. N. Nazarov and I. V. Torgov, Bull. Acad. Sci. URSS Classe Sci. Chim., 495 (1946); Chem. Abstr., 42, 7735 (1948).
(4) For leading reference see R. M. Evans, Quart. Rev., 13, 61

(4) For leading reference see R. M. Evans, Quart. Rev., 13, 61 (1959).

(5) Leco manganese dioxide obtained from E. H. Sargent and Co.
(6) N. Harfenist, A. Bavley, and W. A. Lazier, J. Org. Chem., 19, 1608(1954).

(7) J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, B. A. Hems, A. B. A. Jansen, and T. Walker, J. Chem. Soc., 1094 (1952).

LABLE